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Abstract. Estimation of target registration error (TRE), a common
measure of the registration accuracy, is an important issue in computer
assisted surgeries. Within the last decade, several new approaches have
been developed to estimate either the mean squared value of TRE or the
distribution of TRE under different noise conditions. In this paper, we
theoretically demonstrate that all the proposed algorithms converge to a
general Maximum Likelihood (ML) solution. Numerical simulations are
performed to validate our derivations. Using experimentally measured
fiducial localization error, we provide an example of TRE prediction in
the presence of anisotropic noise.

1 Introduction

In the guidance systems designed for computer assisted surgeries (such as hip,
spine and neurosurgeries), rigid transformations are mainly used to perform the
registration. In these surgeries, the accuracy of the performed registration is an
important factor which has direct impact on the operation quality. Due to the
noise in medical data sets, there is always error in the performed registrations,
and therefore, a measure is required to determine the registration accuracy.

Maurer et al. [1] suggested three useful measures for analyzing the accuracy
of the registration: 1) Fiducial localization error (FLE), which is the error in the
location of the points or fiducials; 2) Fiducial registration error (FRE), which is
the root mean squared distance among corresponding points used in registration;
and 3) Target registration error (TRE), which is the distance, after registration,
between a pair of corresponding points which are not used in registration. Fitz-
patrick and West [2] assumed that FLE (noise in the data set) has an identical
and isotropic Gaussian distribution and used a first-order Taylor series approx-
imation to calculate the expected mean squared value of TRE. They were the
first to derive a closed-form solution to estimate the mean squared value of TRE,
and they used Monte Carlo simulations to approximate the distribution of TRE.
In 2006, Moghari and Abolmaesumi [3] derived a general closed-form solution
to calculate the distribution of TRE at any target locations using the assump-
tion that FLE has an identical and isotropic distribution. In 2007, Ma et al. [4]
� The first two authors had equal contributions.

D. Metaxas et al. (Eds.): MICCAI 2008, Part II, LNCS 5242, pp. 1032–1040, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Theoretical Comparison of Different Target Registration Error Estimators 1033

argued that in real applications FLE might be better modeled by identical and
anisotropic Gaussian noise. Based on the spatial stiffness theory, they derived a
solution which estimates the mean squared value of TRE in the presence of this
noise distribution. Seilhorst et al. [5], also in 2007, utilized the transformation of
covariance method, proposed by Hoff and Vincent [6], to estimate the distribu-
tion of TRE when FLE has an inhomogeneous and anisotropic (heterogeneous)
Gaussian distribution. Similarly, Wiles et al. [7], in 2008, modified Fitzpatrick
and West algorithm to derive another closed-form solution to estimate the mean
squared value of TRE in the presence of identical and anisotropic Gaussian FLE.
Their algorithm is based on a least mean squares (LMS) solution to the fiducial
registration problem. One can show that their method can be improved by using
a weighted LMS algorithm which is a more optimum solution for anisotropic
FLE [8]. Most recently, Moghari and Abolmaesumi [8] utilized the Maximum
Likelihood (ML) algorithm to estimate the distribution of TRE when FLE has
a heterogeneous distribution in the data sets. Furthermore, they demonstrated
that the closed-form solution originally proposed by them in [3] is valid not only
for identical and isotropic FLE, but also for a heterogenous noise condition.

In this paper, we mathematically show that, when FLE has a heterogenous
Gaussian distribution, the spatial stiffness [4] and transform of covariance [5]
algorithms both converge to the ML solution [8]. If FLE has an identical and
anisotropic Gaussian distribution, the modified Wiles algorithm using weight
LMS also converges to the ML solution. Finally, when FLE has an identical and
isotropic distribution, all the algorithms (spatial stiffness, transform of covari-
ance, Wiles, and Fitzpatrick and West algorithms) converge to a unique solution.
Our derivations are further validated by numerical and experimental simulations.

2 Method

In this section, the maximum likelihood [8], spatial stiffness [4], transform of
covariance [5], Wiles [7], and Fitzpatrick and West [2] algorithms are briefly
explained. Then, it is shown that when FLE has an arbitrary Gaussian distri-
bution, the first three algorithms converge to a unique solution; and when FLE
has an identical and isotropic Gaussian distribution, all the algorithms converge
to the same solution.

2.1 Maximum Likelihood Algorithm

Assume data set X, as a 3×N matrix (N is number of points or fiducials), is
rigidly registered to data set Y:

yi = Rxi + t + ni, (1)

where the ith columns of X and Y, i.e. xi and yi, represent a pair of correspond-
ing points in the two data sets. The vector ni is a zero-mean random vector with
probability density function pi, that models FLE distribution for the ith corre-
sponding point in the data sets X and Y. R(θ) is a rotation matrix in terms of
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rotation vector θ consisting of three rotation angles, and t is a translation vec-
tor. Using the likelihood function [8], covariance matrix of the transformation
parameters can be calculated as:

Σ =
(

Σtt Σtθ

Σθt Σθθ

)
=

(−Jtt −Jtθ

−JT
tθ −Jθθ

)−1

, (2)

where Jtt, Jtθ and Jθθ are the second derivatives of the log-likelihood function
f = log

∏N
i=1 pi(yi|xi, t, θ), in terms of t and θ, respectively. If the probability

density function of FLE at the ith point is a zero-mean Gaussian distribution
with covariance matrix Λi, i.e. N (0,Λi), then Jtt, Jtθ and Jθθ can be mathe-
matically calculated as:
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Having calculated the covariance matrix of the transformation parameters Σ
from Equation (2) by using (3), (4), and (5), one can utilize the closed-form
solution proposed in [3] to estimate the distribution of TRE at a target point r.

2.2 Transform of Covariance Method

Sielhorst et al. [5] employed the transform of covariance algorithm, introduced
by Hoff and Vincent [6], to calculate the covariance matrix of the transformation
parameters as follows:

Σs =

⎛
⎝MT

[
Λ1 0

. . .
0 ΛN

]−1

M

⎞
⎠

−1

. (6)

M is a concatenation of Jacobian matrix of Equation (1) calculated at each point
in the data set X:

M = [J(x1)T , ...,J(xN )T ]T , J(xi) =

⎛
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i −xy
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)
, (7)

where I is the identity matrix and Bi is defined in Equation (4). By substituting
J(xi) in M, and M in (6), Σs can be modified to:

Σs =
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Comparing Equations (8) and (2) verifies that both the transform of the covari-
ance and maximum likelihood algorithms reach to the same solution in estima-
tion of the covariance matrix of the transformation parameters. Equation (8) can
be used in the closed-form solution derived in [3] to estimate the distribution of
TRE at the target location r.

2.3 Spatial Stiffness Method

Ma et al. [4] utilized the spatial stiffness theory to estimate the mean squared
value of TRE to within a constant factor, when FLE has a zero-mean Gaussian
distribution with covariance matrix Λi = diag( 1

kxi
, 1

kyi
, 1

kxi
). Using the spatial

stiffness theory, the covariance matrix of the transformation parameters is com-
puted as Σb = (
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By substituting (8) in Σb, it can be easily verified that Σb = Σc = Σ. Having
calculated Σb, as explained before, one can easily estimate the distribution of
TRE at the target location r.

2.4 Wiles Algorithm

Wiles et al. [7] derived a closed-form solution that estimates the mean squared
value of TRE when FLE has an identical and anisotropic zero-mean Gaussian
noise distribution N(0,Λi). Their algorithm, similar to Fitzpatrick and West
algorithm, utilizes a LMS algorithm to estimate the registration parameters and
their variances. However, since FLE has an anisotropic distribution, using a
weighted LMS leads to a more optimal solution [8]. If the data sets are trans-
lated to their origins and aligned along their eigenvectors, and FLE axes are
aligned with X and it has an uncorrelated zero mean Gaussian distribution
(Λi = diag(σ2

x, σ2
y, σ2

z)), by using a weighted LMS algorithm to calculate the
transformation parameters and Wiles et al. algorithm to compute the covariance
matrix of the transformation parameters, Σtt, Σtθ and Σθθ can be determined

as follows: Σtt = diag(σ2
x

N ,
σ2

y

N ,
σ2

z

N ), Σtθ = 0, and
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(9)
which match the ones computed from (2), (3), (4), and (5).

2.5 Fitzpatrick and West Algorithm

Fitzpatrick and West [2] presented a close-form solution to estimate the mean
squared value of TRE when FLE has an isotropic and identical zero-mean Gaus-
sian distribution with covariance matrix Λi = σ2I. By using these assumptions
that the centroid of the data sets is at the origin and the data sets are aligned
along their orthogonal eigenvectors, (3), (4) and (5), and hence, the covari-
ance matrix of the transformation parameters can be calculated as: Σtt = σ2

N I,
Σtθ = 0 and

Σθθ = diag
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(10)
which match the ones computed by Fitzpatrick and West (i.e. Equations (33),
(38) and (39) in [2]).

3 Results

In order to test and verify our derivations, numerical and experimental simula-
tions are performed to compare different algorithms’ performances in estimating
the distribution of TRE at a target location r.

3.1 Simulation Results

To perform the simulation, number of points in the data sets is assumed to be
10. Data set X is generated by drawing 10 fiducial points uniformly within a
cube with the sides of ±100mm. Also, r, the target location, is selected randomly
from a cube of sides ±200mm. For each data set X, we generated two data sets
Y1 and Y2 contaminated by isotropic, identical noise and heterogeneous noise,
respectively, by perturbing independently the x, y and z components of each
point in X by a zero-mean Gaussian random variable, which models FLE along
each orthogonal axis. The distribution of FLE is considered to be N (0, σ2I), and
N (0, diag(σ2

x, σ2
y, σ2

z)) for the isotropic and heterogeneous cases, respectively. σ2

is assumed to be 10mm2 and σ2
x, σ2

y, and σ2
z are randomly chosen from a uniform

distribution with the side of 0mm2 and 20mm2. In this way, we assume FLE has
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an identical isotropic zero-mean Gaussian distribution and heterogeneous zero-
mean Gaussian distribution for each point in the data set, respectively. Then, X
is registered to Y1 and Y2, and TRE is measured at r.

The distribution of TRE is numerically estimated by using repeated pertur-
bation and registration steps 100, 000 times (Monte Carlo simulations). Also, the
maximum likelihood [8], transform of covariance [5], spatial stiffness [4], Wiles [7]
and Fitzpatrick and West [2] algorithms are used to compute the distribution
of TRE. Figures 1 and 2 display the computed probability density functions
of TRE at r = [184, 91,−35]T using numerical simulations and the other algo-
rithms when FLE has an isotropic and identical, and a heterogenous zero-mean
Gaussian distribution, respectively.
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3.2 Experimental Results

The TRE estimators require that the FLE magnitude (Fitzpatrick and West al-
gorithm) or the FLE covariance be specified. We attempted to characterize the
FLE of an optical tracking system by measuring the FRE; the FRE is known
to approach the FLE as the number of fiducials increases [9]. We used an Opto-
trak Certus (Northern Digital Inc., Waterloo, Ontario, Canada) for our optical
tracking system. A large coordinate reference frame (CRF) was constructed by
mounting 20 infrared light emitting diodes (IREDs) on the perimeter of a square
of size 380 × 380 mm on a rigid board. The board was mounted vertically on
an optical bench such that the board could rotate about its vertical axis. The
optical bench was positioned well inside the working volume of the Certus.

We acquired sets of measurements of the CRFs at 50 different locations on
a horizontal plane inside the calibrated working volume of the Certus. For each
set of measurements, we rotated the CRFs from -50 to +50 degrees in 10 degree
increments about the vertical axis. At each angular increment, the CRF was
kept stationary relative to the Certus and 200 measurements of the 3D IRED
locations were acquired over a period of 2 seconds; each IRED location was
taken to be the average location (over the 200 measurements). Note that this
process of measuring the location of a stationary IRED does not yield the FLE;
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Fig. 3. (Left) Experimentally determined FRE magnitude. (Middle) Principal com-
ponents of FRE covariance. (Right) Theoretical predictions of RMS TRE using the
experimentally determined FLE.

it produces a measurement of the jitter [10], which is only one component of
FLE. The Certus was not moved throughout the entire experiment.

For each measurement P of the 20 IREDS taken at 0 degrees rotation, we
registered all sets of measurements taken throughout the working volume to P
and computed the vectorial FRE for each IRED; the registrations were per-
formed using Horn’s method [11]. The root mean square (RMS) of the empirical
FRE magnitude and the square root of the eigenvalues of the covariance of FRE
are shown in Figure 3. We observed that the covariance matrix of FRE was
diagonally dominant for rotation angles up to ±20 degrees, but the covariances
(off-diagonal elements) became significant for larger rotation angles. Using the
estimated FLE covariances, we computed the expected RMS TRE using the es-
timators we have studied [2,4,5,7,8] for a CRF used in a previous publication [4].
For Fitzpatrick and West’s algorithm we used the root means square magnitude
of the experimentally determined FLE. The CRF was a tetrahedral configura-
tion of 4 fiducial markers. The results, shown in Figure 3, indicate that the best
case TRE occurs when the CRFs directly face the tracking cameras, a trend
opposite to that reported in [4] where a simple constant anisotropic noise model
was used. For this particular CRF, assuming isotropic, identical noise results in
an overestimated value of TRE.

4 Discussion

Using isotropic and identical zero-mean Gaussian noise for FLE, our numerical
simulation results, as expected and shown in Figure 1, verify that all the algo-
rithms estimate the same distribution of TRE at the target location r as the one
obtained by Monte Carlo simulations. However, when FLE has a heterogeneous
zero-mean Gaussian distribution, as shown in Figure 2, only transform of covari-
ance and spatial stiffness algorithms converge to the ML solution that closely
follows the result obtained from Monte Carlo simulations. The same observation
is made in the performed experimental simulations discussed in the remainder.

Using a simple anisotropic noise model for FLE, where the noise component
magnitudes were constant, a theoretical model of TRE were shown to predict a
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peak in TRE when the CRF directly faces the camera (equivalent to our 0 degrees
of rotation) [4]. Using an empirical model of FLE, we have shown the exact
opposite: expected TRE is minimized when the CRF directly faces the camera.
The reason for this is that the FLE noise magnitude and covariance appear to
depend on the orientation of the IREDs relative to the tracking camera; this
angular dependence has been observed by other researchers [12,13] but we were
unable to find quantitative values to use in our models.

The theoretical models of TRE appear to be accurate when tested using sim-
ulations but their predictions can only be as good as the noise models they use.
This begs the question: how do we construct good noise models? We attempted
to experimentally measure FLE and its distribution and used the estimated co-
variances in the TRE models. Other work that modelled measurement error
starting at the image plane of the cameras has recently been reported [5,14].
Given accurate noise models, we can begin to explore whether or not meth-
ods that account for heteroscedastic noise significantly outperform least-squares
methods for real, high-accuracy tracking systems.

5 Conclusion

For the first time, we unified all the algorithms proposed to estimate the dis-
tribution of TRE at a target location r. It is theoretically and experimentally
shown that if FLE has inhomogeneous and anisotropic zero-mean Gaussian noise,
then the transform of covariance and spatial stiffness algorithms converge to the
Maximum Likelihood solution. Also, if FLE has an identical and anisotropic
distribution, a modified Wiles algorithm also converges to the ML solution. Fi-
nally, all algorithms including Fitzpatrick and West derive the same distribution
of TRE at a target location when FLE has identical and isotropic zero-mean
Gaussian noise. In real applications, noise might not have a Gaussian distribu-
tion, and that would be beneficial to compare these algorithms for the case where
FLE has a distribution which is not necessarily Gaussian.
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